

The results presented herein use modeling assumptions developed by EIPC, EIPC stakeholders and CRA for purposes of EIPC capacity expansion modeling. As such, these results do not necessarily reflect the opinions or views of CRA or any individual EIPC stakeholder.

Overview

1

- CRA is using the GE MAPS model to evaluate the 2030 production cost of Scenarios 1, 2, and 3, along with six additional sensitivities.
 - GE MAPS is a detailed economic dispatch and production cost model that simulates the operation of the electric power system taking into account transmission topology.
 - The model footprint comprises the Eastern Interconnect, and includes the generating units and the transmission load flow and flowgates for each scenario from Tasks 7 and 8.
- Using the EIPC stakeholder-approved input assumptions into GE MAPS as approved in July, and the results of Task 7 and 8, CRA completed modeling of:
 - S3 Base (Business as Usual)
 - S2 Base (National RPS State/Regional Implementation)
 - S1 Base (Combined Federal Climate and Energy Policy)

Overview

- CRA has also completed modeling of the six sensitivities approved by the SSC:
 - S3 High Gas:
 - All gas prices increased by 25%
 - S3 High Load:
 - All loads increased by 5%
 - S1 High Load:
 - All loads increased by 5%
 - S1 High Spin Availability
 - Reduce the spin requirement in MISO, SPP, PJM and IESO by 50% and modify CC operating parameters in all regions to increase operating flexibility
 - S1 Flowgate Relief
 - High Spin Availability changes above, plus increase by 50% the limits for 25 flowgates in MISO_W, MISO_MO-IL, and MAPP_US.
 - S1 Reduced Wind
 - Multiply wind capacity for every wind unit in MISO_W by 75%, in Nebraska by 61%, in SPP_N by 85%, and in MISO_MO_IL by 74%.

- Generation by Capacity Type for the EI in 2030 is shown below for S1 Base, S2 Base, and S3 Base
 - Overall results are fairly close to the Phase 1 Results

	Gene	eration (T	Wh)	% of `	Total Sup	ply
	S1 Base	S2 Base	S3 Base	S1 Base	S2 Base	S3 Base
Coal	40	1,095	1,399	1%	30%	38%
Nuclear	1,087	875	886	36%	24%	24%
CC	755	532	831	25%	15%	23%
СТ	39	32	43	1%	1%	1%
Steam Oil/Gas	6	13	15	0%	0%	0%
Hydro	211	228	193	7%	6%	5%
On-Shore Wind	722	476	217	24%	13%	6%
Off-Shore Wind	6	92	6	0%	3%	0%
Other Renewable	65	253	66	2%	7%	2%
Pump Storage Net	-8	-6	-4	0%	0%	0%
DR	4	0	1	0%	0%	0%
Total Generation	2,927	3,590	3,653	98%	99%	99%
External Supply	51	31	34	2%	1%	1%
Total	2,979	3,621	3,687	100%	100%	100%

The results presented herein use modeling assumptions developed by EIPC, EIPC stakeholders and CRA for purposes of EIPC capacity a expansion modeling. As such, these results do not necessarily reflect the opinions or views of CRA or any individual EIPC stakeholder.

S1, S2 & S3 Base

- EI 2030 Production Costs, Emissions, and Wind Curtailment are shown below for S1 Base, S2 Base, and S3 Base
 - Wind is curtailed when prices (LMPs) at the unit's location fall below \$1/MWh.

	S1 Base	S2 Base	S3 Base
Production Costs (M\$)			
Fuel	40,802	73,789	85,057
Variable O&M	6,430	15,502	18,411
Total	47,231	89,291	103,469
CO2	45,340	126	154
Total w/CO2	92,571	89,416	103,622
Emissions (short tons)			
NOx (000)	93	873	1,122
SO2 (000)	21	1,300	1,771
CO2 (millions)	358	1,391	1,792
Wind Curtailment			
Wind Curtailment (TWh)	131	30	1
Percent Curtailed	15%	5%	0%

• Wind curtailment (TWh) in S1 Base takes place predominately in three NEEM regions.

		Ganaratad	Ganaratad		Wind	
	Potential	Onchoro	Offeboro		Generated	Curtail
	Wind	Wind	Wind	Curtail		Curtan-
	Enorgy	Enorgy	Enorgy		as /001	Borcont
	Litergy	Litergy	Energy		Demanu	
	1	1	0	0	0%	30%
FRUC	0	0	0	0	0%	
MAPP_US	32	28	0	4	97%	12%
MISO_IN	28	28	0	1	32%	2%
MISO_MI	24	24	0	0	27%	0%
MISO_MO-IL	32	23	0	8	25%	26%
MISO_W	261	196	0	65	150%	25%
MISO_WUMS	9	9	0	0	16%	1%
NE	55	33	0	22	109%	40%
NEISO	18	16	2	0	15%	2%
NonRTO_Midwest	0	0	0	0	0%	
NYISO_A-F	19	18	0	1	33%	5%
NYISO_G-I	1	1	0	0	4%	0%
NYISO_J-K	0	0	0	0	0%	
PJM_E	6	2	4	0	2%	1%
PJM_ROM	6	6	0	0	4%	0%
PJM_ROR	44	43	0	1	9%	1%
SOCO	0	0	0	0	0%	
SPP_N	146	125	0	21	163%	15%
SPP_S	148	143	0	5	92%	3%
TVA	0	0	0	0	0%	0%
VACAR	9	9	0	0	4%	0%
IESO	17	15	0	2	12%	13%
MAPP_CA	1	1	0	0	3%	0%
EI	859	722	6	131	24%	15%

The results presented herein use modeling assumptions developed by EIPC, EIPC stakeholders and CRA for purposes of EIPC capacity 5 expansion modeling. As such, these results do not necessarily reflect the opinions or views of CRA or any individual EIPC stakeholder.

• Wind curtailment (TWh) in S2 Base takes place predominately in VACAR.

		Generated	Generated		Wind	
	Potential	Onshore	Offshore		Generated	Curtail-
	Wind	Wind	Wind	Curtail-	as % of	ment
	Energy	Energy	Energy	ment	Demand	Percent
ENT	0	0	0	0	0%	0%
FRCC	0	0	0	0	0%	
MAPP_US	25	25	0	0	69%	2%
MISO_IN	1	1	0	0	1%	0%
MISO_MI	9	9	0	0	8%	0%
MISO_MO-IL	3	3	0	0	2%	0%
MISO_W	86	81	0	5	48%	5%
MISO_WUMS	4	4	0	0	6%	0%
NE	9	9	0	0	22%	1%
NEISO	15	14	2	0	12%	0%
NonRTO_Midwest	0	0	0	0	0%	
NYISO_A-F	11	11	0	0	18%	0%
NYISO_G-I	0	0	0	0	1%	0%
NYISO_J-K	0	0	0	0	0%	
PJM_E	36	2	34	0	28%	0%
PJM_ROM	21	21	0	0	13%	0%
PJM_ROR	143	142	0	0	26%	0%
SOCO	1	1	0	0	0%	
SPP_N	40	39	0	1	40%	3%
SPP_S	93	90	0	4	46%	4%
TVA	0	0	0	0	0%	0%
VACAR	81	6	56	19	21%	24%
IESO	17	17	0	1	12%	3%
MAPP_CA	1	1	0	0	2%	2%
EI	598	476	92	30	16%	5%

The results presented herein use modeling assumptions developed by EIPC, EIPC stakeholders and CRA for purposes of EIPC capacity 6 expansion modeling. As such, these results do not necessarily reflect the opinions or views of CRA or any individual EIPC stakeholder.

- Generation by Capacity Type for the EI in 2030 is shown below for the S3 sensitivities
 - High Gas reduces generation by CCs and replaces it with mostly coal
 - High Load increases the generation of CCs, and to a lesser extent CTs and coal

	Gene	eration (TW	h)	% of	of Total Supply			
	S3 Base	S3 HiGas	S3 HiLoad	S3 Base	S3 HiGas	S3 HiLoad		
Coal	1,399	1,465	1,437	38%	40%	37%		
Nuclear	886	886	886	24%	24%	23%		
CC	831	768	945	23%	21%	24%		
СТ	43	39	65	1%	1%	2%		
Steam Oil/Gas	15	15	23	0%	0%	1%		
Hydro	193	193	193	5%	5%	5%		
On-Shore Wind	217	217	217	6%	6%	6%		
Off-Shore Wind	6	6	6	0%	0%	0%		
Other Renewable	66	71	67	2%	2%	2%		
Pump Storage Net	-4	-6	-4	0%	0%	0%		
DR	1	1	2	0%	0%	0%		
Total Generation	3,653	3,655	3,837	99%	99%	99%		
External Supply	34	34	34	1%	1%	1%		
Total	3,687	3,689	3,871	100%	100%	100%		

- 2030 EI Production Costs, Emissions, and Wind Curtailment are shown below for the S3 sensitivities.
 - <u>High Gas</u> increases production costs by 10% (higher gas costs) and CO₂ emissions by 2% (higher coal use).
 - <u>High Load</u> increases production costs by 9% (demand increase of 5% met by higher cost resources) and CO₂ emissions by 6%.

	S3 Base	S3 HiGas	S3 HiLoad
Production Costs (M\$)			
Fuel	85,057	94,326	93,317
Variable O&M	18,411	19,072	19,407
Total	103,469	113,397	112,724
CO2	154	150	178
Total w/CO2	103,622	113,547	112,902
% Increase	-	10%	9%
Emissions (short tons)			
NOx (000)	1,122	1,171	1,184
SO2 (000)	1,771	1,988	1,880
CO2 (millions)	1,792	1,833	1,899
% Increase	-	2%	6%
Wind Curtailment			
Wind Curtailment (TWh)	1	1	1
Percent Curtailed	0%	0%	0%

- Generation by Capacity Type for the EI in 2030 is shown below for the S1 sensitivities.
 - <u>High Load</u> increases the generation of CCs, and to a lesser extent CTs and wind.
 - High Spin Availability reduces CC generation (used for spin) and reduces wind curtailment.
 - Adding <u>Flowgate Relief</u> further reduces wind curtailment.
 - <u>Reduced Wind</u> replaces the reduced wind generation with mostly CC generation.

	S1 Generation (TWh)						% of Total Supply			
			High	+Flow-	Re-			High	+Flow-	Re-
		High	Spin	gate	duced		High	Spin	gate	duced
	Base	Load	Avail	Relief	Wind	Base	Load	Avail	Relief	Wind
Coal	40	46	41	42	43	1%	1%	1%	1%	1%
Nuclear	1,087	1,090	1,091	1,091	1,089	36%	35%	37%	37%	37%
CC	755	854	725	719	786	25%	27%	24%	24%	26%
СТ	39	56	43	42	44	1%	2%	1%	1%	1%
Steam Oil/Gas	6	8	7	7	7	0%	0%	0%	0%	0%
Hydro	211	214	212	212	211	7%	7%	7%	7%	7%
On-Shore Wind	722	735	733	743	672	24%	23%	25%	25%	23%
Off-Shore Wind	6	6	6	6	6	0%	0%	0%	0%	0%
Other Renewable	65	69	71	71	67	2%	2%	2%	2%	2%
Pump Storage Net	-8	-8	-6	-6	-10	0%	0%	0%	0%	0%
DR	4	5	4	3	3	0%	0%	0%	0%	0%
Total Generation	2,927	3,075	2,929	2,933	2,917	98%	98%	98%	98%	98%
External Supply	51	52	52	52	51	2%	2%	2%	2%	2%
Total	2,979	3,127	2,980	2,984	2,969	100%	100%	100%	100%	100%

S1 Sensitivities

- 2030 EI Production Costs, Emissions, and Wind Curtailment are shown below for the S1 sensitivities.
 - <u>High Load</u> increases prod costs by 14% and CO₂ emissions by 15% (*higher CC generation*).
 - High Spin Availability decreases prod costs by 4% and CO₂ by 5% (CC replaced with wind).
 - Adding <u>Flowgate Relief</u> further decreases prod costs and CO₂ emissions by a small amount.
 - <u>Reduced Wind</u> increases prod costs and CO₂ emissions by 5% (less wind).

			High	+Flow-	
		High	Spin	gate	Reduced
	S1 Base	Load	Avail	Relief	Wind
Production Costs (M\$)					
Fuel	40,802	45,805	39,552	39,385	42,630
Variable O&M	6,430	6,932	6,457	6,443	6,536
Total	47,231	52,737	46,010	45,828	49,165
CO2	45,340	52,360	43,153	42,825	47,586
Total w/CO2	92,571	105,097	89,163	88,654	96,751
% Increase	-	14%	-4%	-4%	5%
Emissions (short tons)					
NOx (000)	93	113	92	92	99
SO2 (000)	21	25	21	21	23
CO2 (millions)	358	413	340	338	375
% Increase in CO2	-	15%	-5%	-6%	5%
Wind Curtailment					
Wind Curtailment (TWh)	131	119	120	110	64
Percent Curtailed	15%	14%	14%	13%	9%
% Change in Curtailment		-10%	-9%	-16%	-51%

- 2030 Wind Curtailment by region is shown below for the S1 Sensitivities.
 - Curtailment is reduced by about 10 TWh (15% to 14%) in High Load and High Spin Availability.
 - Curtailment is reduced another 10 TWh in <u>Flowgate Relief</u> (14% to 13%). Percentage reductions in certain regions (e.g., MAPP_US and MISO_MO-IL) are more significant.
 - With 14% less wind potential, <u>Reduced Wind</u> decreases curtailment by about 65 TWh.

	Potential V	Vind(TWh)		Curtailment (Twh)				Curtailment Percentage				
					High	+Flow-	Re-			High	+Flow-	Re-
	Base &	Reduced		High	Spin	gate	duced		High	Spin	gate	duced
	Others	Wind	Base	Load	Avail	Relief	Wind	Base	Load	Avail	Relief	Wind
ENT	1	1	0	0	0	0	0	30%	27%	33%	17%	23%
FRCC	0	0	0	0	0	0	0					
MAPP_US	32	32	4	3	3	2	3	12%	10%	11%	6%	10%
MISO_IN	28	28	1	0	0	1	1	2%	2%	2%	2%	2%
MISO_MI	24	24	0	0	0	0	0	0%	0%	0%	0%	0%
MISO_MO-IL	32	24	8	8	8	5	5	26%	24%	25%	15%	21%
MISO_W	261	196	65	61	62	57	26	25%	23%	24%	22%	13%
MISO_WUMS	9	9	0	0	0	0	0	1%	0%	0%	0%	0%
NE	55	34	22	21	21	19	9	40%	38%	37%	33%	26%
NEISO	18	18	0	0	0	0	0	2%	1%	1%	1%	2%
NonRTO_Midwest	0	0	0	0	0	0	0					
NYISO_A-F	19	19	1	1	1	1	1	5%	4%	4%	4%	5%
NYISO_G-I	1	1	0	0	0	0	0	0%	0%	0%	0%	0%
NYISO_J-K	0	0	0	0	0	0	0					
PJM_E	6	6	0	0	0	0	0	1%	0%	0%	0%	1%
PJM_ROM	6	6	0	0	0	0	0	0%	0%	0%	0%	0%
PJM_ROR	44	44	1	0	0	0	0	1%	1%	1%	1%	1%
SOCO	0	0	0	0	0	0	0					
SPP_N	146	124	21	18	17	14	12	15%	12%	12%	10%	10%
SPP_S	148	148	5	5	5	10	4	3%	3%	4%	7%	2%
TVA	0	0	0	0	0	0	0	0%	0%	0%	0%	0%
VACAR	9	9	0	0	0	0	0	0%	0%	0%	0%	0%
IESO	17	17	2	1	1	1	2	13%	8%	6%	6%	12%
MAPP_CA	1	1	0	0	0	0	0	0%	0%	0%	0%	0%
EI	859	742	131	119	120	110	64	15%	14%	14%	13%	9%

The results presented herein use modeling assumptions developed by EIPC, EIPC stakeholders and CRA for purposes of EIPC capacity 11 expansion modeling. As such, these results do not necessarily reflect the opinions or views of CRA or any individual EIPC stakeholder.

- Congestion in <u>High Spin Availability</u> in comparison to further adding <u>Flowgate Relief</u> is shown below.
 - Binding hours and congestion on the 25 modified flowgates in three regions (MISO_W, MISO_MO-IL, and MAPP_US) are reduced substantially.
 - Roughly half of the decrease is offset by increased congestion on other flowgates in these three regions or between one of these three regions and another region.
 - The net flow from MISO/SPP to PJM ROR is about the same.

		No. of	of No. of Binding Hours		Hours	Cor	\$ (a)	
		Flow-	HiSpin	Flowgate		HiSpin	Flowgate	
		gates	Avail	Relief	Decrease	Avail	Relief	Decrease
25 Modified Flowgates in 3 NEEM Regions		25	23,404	845	22,559	6,724	75	6,649
Flowgates in the 3 NEEM Regions		144	37,486	21,966	15,520	7,966	2,278	5,687
Flowgates in or between the 3 NEEM Regions		239	45,408	34,840	10,568	8,040	3,879	4,161
			HiSpin	Flowgate				
			Avail	Relief	Increase			
Net MISO Flows and SPP DC Flows i	nto PJM RC	R (TWh)	121	121	(0)			
(a) Average Shadow Price when Binding *	No. of Bindin	q Hours, sun	nmed across	s flowgates. C	congestion fic	gures are fo	r the forward	direction.

The results presented herein use modeling assumptions developed by EIPC, EIPC stakeholders and CRA for purposes of EIPC capacity 2 expansion modeling. As such, these results do not necessarily reflect the opinions or views of CRA or any individual EIPC stakeholder.

